- Pathiraja, S., H. Moradkhani, L. Marshall, A. Sharma, G, Geenens (2018), Data Driven Model Uncertainty Estimation in Data Assimilation, Water Resources Research, 10.1002/2018WR022627.
- Abbaszadeh, P., H. Moradkhani, and H. Yan (2018), Enhancing Hydrologic Data Assimilation by Evolutionary Particle Filter and Markov Chain Monte Carlo , Advances in Water Resources, 111, 192-204, doi:10.1016/j.advwatres.2017.11.011.
- Pathiraja, S., Anghileri, D., Burlando, P., Sharma, A., Marshall, L., and Moradkhani, H. (2018), Insights on the impact of systematic model errors on data assimilation performance in changing catchments, Advances in Water Resources, 113,202-222.
- Pathiraja, S., Anghileri, D., Burlando, P., Sharma, A., Marshall, L., and Moradkhani, H. (2017), Time varying parameter models for catchments with land use change: the importance of model structure, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-382.
- Yan, H., and H. Moradkhani (2016), Combined Assimilation of Streamflow and Satellite Soil Moisture with the Particle Filter and Geostatistical Modeling, Advances in Water Resources, 94 364–378, doi:10.1016/j.advwatres.2016.06.002.
- Pathiraja, S., L. Marshall, A. Sharma, and H. Moradkhani (2016), Detecting non-stationary hydrologic model parameters in a paired catchment system using Data Assimilation, Advances in Water Resources, 94, 103–119, doi:10.1016/j.advwatres.2016.04.021.
- Pathiraja, S., L. Marshall, A. Sharma, and H. Moradkhani (2016), Hydrologic Modeling in Dynamic catchments: A Data Assimilation Approach, Water Resources Research, DOI: 10.1002/2015WR017192.
- Moradkhani, H., C.M. DeChant and S. Sorooshian (2012), Evolution of Ensemble Data Assimilation for Uncertainty Quantification using the Particle Filter-Markov Chain Monte Carlo Method, Water Resources Research,48,W12520, doi:10.1029/2012WR012144.
- Parrish, M., H. Moradkhani, and C.M. DeChant (2012), Towards Reduction of Model Uncertainty: Integration of Bayesian Model Averaging and Data Assimilation, Water Resources Research, 48, W03519, doi:10.1029/2011WR011116.
Skip to content